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Based on Jacobi elementary rotations, a simple, elegant procedure to obtain approxi- 
mate CI wavefunctions is discussed. Essentially, a sequence of (2 x 2) matrices is built- 
up, and the eigenvector attached to the lowest eigenvalue is used to construct a stepwise 
set of coefficients, which become a very good approximation to the exact CI result. Full 
CI calculations could easily be reached in this way. An example formed by some atoms of 
the He isoelectronic sequence is provided in order to test the flexibility and accuracy of 
the procedure. A Fortran 90 code is available. 

1. I n t r o d u c t i o n  

The CI theoretical f ramework is a widespread quantum chemical procedure 
which has been treated by many authors. F rom early times [1] a stepwise procedure  
to solve the involved huge CI eigensystem has been described. A sample of  the his- 
tory of  CI development can be found in ref. [2]. In some instances, see for example 
[3], the problem has been studied in order to simplify the computat ional  burden. 
More  recently, many  authors have been involved with the study of  better algo- 
ri thms to obtain eigenvalues and eigenvectors of  large symmetric matrices, see cita- 
tions in ref. [4] for a recent view and a clever discussion. 

For  many  years our laboratory has been working on the quantum mechanical  
applications of  elementary Jacobi rotations. Various papers have been devoted to 
the direct optimization of  the electronic energy [5] and more recently various alter- 
natives [6] to the well-known Jacobi diagonalization algorithm [7] have been stud- 
ied. Also, several times, the CI problem has been studied by us. In an early paper 
dealing with quan tum similarity and MO taxonomy [8], a choice of  appropriate vir- 
tual orbitals to obtain better CI convergence was proposed and illustrated with an 
example. More  recently, within the application framework of  the so-called nested 
summat ion  symbols [9], the CI formulat ion was presented from a very general point 
of  view. In the same theoretical context it was shown how a generalized Slater rule, 
dealing with matr ix elements of  many  electronic operators, over determinantal  
functions, can be easily deduced [9]. Also these last studies were connected to paral- 
lel computat ional  features. 
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The convergence of both sets of ideas: Jacobi rotations and nested summation 
symbols dealing with CI, have been the motivation of the present paper. Thus, in 
comparison to a quite general CI study, it has been clear to us that describing a rea- 
sonable way to obtain low cost, accurate enough, full CI wavefunctions may be of 
some help to computational quantum chemists. The present paper will be devoted 
to this task. 

First, a simple but efficient and cost effective algorithm will be described in order 
to compute accurate enough CI wavefunctions up to any excitation level. A simple 
example, involving two-electron He-like atomic structures will be presented next, 
as a way to illustrate the practical use of the proposed algorithm. 

2. A procedure and some algori thms 

Let us suppose that a starting approximate ground state normalized wavefunc- 
tion 10, 0) = 10) and the associated electronic energy E(0, 0) are known, such as 

E(0, 0) = (0, 0Jill0, 0) .  (1) 

A new approximate wavefunction 10, 1) may be defined by just picking up some 
appropriate excited state basis function I1), and using 

IO, 1) = clO, O ) + s l l ) ,  (2) 

where c 2 + s 2 = 1, so the scalars {c, s} behave as rotation cosine and sine, respec- 
tively. 

The polyelectronic basis functions pair used so far describes a Hamiltonian 
(2 × 2) matrix representation scaled by the initial energy value E(0, 0) in such a way 
that 

where 

and 

f l =  (0, 0IHI1)[E(0, 0)] -~ 

(3) 

(4) 

c~ = (I lHI1)[E(0,0)]  -1 . (5) 

The eigenvalue ofh associated with the lowest energy corresponds to 

7 = ½[1 + a + ((a - 1) 2 + 4fl2)1/21 , (6) 

with the parameters {a, fl} defined above in eqs. (4) and (5). 
Once eq. (6) has been computed, the corrected new ground state energy may be 

written as 
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E(0, 1) = 0'E(0, 0). (7) 

The values of the {c, s} coefficients pair may be obtained by diagonalizing the 
(2 × 2) matrix h, defined in eq. (3), by means of Algorithm A0. 

a) Define'r = (a - 1)(2t9) -1 and t =  I~-I + (1 + ~)1/2. 

b) One has: s = sign(-r)(1 + t2) -1/2 and c = st. 

Algorithm A0. Obtaining the cosine and sine pair {c, s} from the elements of the matrix (3). 

Algorithm A0 constitutes the usual way in which the Jacobi diagonalization pro- 
ceeds [17]. So far the fundamental formulae for the proposed computation of the 
approximate CI wavefunction coefficients are complete. Algorithm A1 illustrates 
how to proceed in the nth step. 

Using the simple computational device as described in Algorithm A1, a set of 
coefficients {dp (~) } can be obtained in terms of the successive {c, s} pairs, such as 

n-1 

10, ,> = d(,°)l,,> + F_, , (8) 
p=0 

where 

0) Suppose known the approximate energy E(0, n) and wavefunction 10, n). 

1) Choose the next step approximate excited state basis set function In + 1). 

2) Compute the parameters/9 = (0, nlH[n + 1 ) [E(0, n)]-I 

-- (n + l l n ln  + 1)[E(0, n)] -I 

3) Compute 7 using equation (6). In this way: E(O, n + 1) = 7E(O, n). 

4) Compute {c (n+l), s(n+l) } using algorithm A0. Then, the new wavefunction is 

[0, n + 1) = c('+l)[0,n) + s('+l)ln + 1). 

5) Ifn > nmax then exit 

else E(0,n) ~ E ( O , n +  1);[0,n) *--10,n+ 1) 

cycle to 1). 

Algorithm A 1. Obtaining the successive approximations to the CI wavefunction. 
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and 

/I 

d(p n) = s(P) 1-[ c(k) (9) 
k = p + l  

a(n  = S(n). (10) 

Algori thm A1 needs the nth row or column of the Hamiltonian matrix represen- 
tation over the chosen basis set: { (plHIn); 0 ~<p ~< n}, which produces an n + 1 = N 
dimensional vector. Due to the variational principle, the obtained energy at the nth 
step, E(0, n), will always be greater than or equal to the exact value, E0, which can 
be obtained by diagonalizing an (N x N) matrix and taking the minimal valued 
one. The energy difference will be small and the approximate functions, 10, an), and 
the exact ones, 10,fn), will differ in a small measurable amount:  

e(~ u) --Ill0, a n ) -  10,f.)llu N-1 , (11) 
N being the column or row space dimension. It seems to be a general fact that the 
function 10, an) has the same coefficient signs and appropriate magnitude as the 
exact CI calculation. 

3. A n  example  

The He isoelectronic family has been chosen due to the well-known values of  
the He energy, computed long time ago and collected by Parr [10]. In this sense, the 
whole program constructed for this task in Fortran 90 (TWOEL-96) [11] can be 
easily tested. In the two-electron case, the basis set functions have been chosen as ns 
STO, whose integrals are readily evaluated, see for example [12]. SCF calculations 
have also been carried out for every system, a two-electron SCF subroutine has 
been included into the code as a source of  one-electron functions. Then, the basis 
set integrals are transformed and used to construct the elements of  the Hamiltonian 
matrix, which can be easily evaluated using Algorithm A2. 

After the elements of the Hamiltonian matrix H are available, then Algori thm 
A1 can be used over them, taking at each elementary step the excitation functions 
basis set: {1 [ij]) }, sequentially. Paired excitation CI functions and energies, invol- 
ving basically the wavefunction subset {1[ii])}, have also been included in the pres- 
ent study for computational  purposes and comparisons sake. 

Full CI energy evaluation has been included within TWOEL-96 and performed 
using a parallelizable Jacobi algorithm developed in our laboratory [6], permitt ing 
the computat ion of the lowest eigenvalue and the attached eigenvector only. 

As a first TWOEL-96 program test, a calculation with n = 30, involving 14 ls, 
6 2s, 4 3s, 3 4s, 2 5s and 1 6s well-tempered STO functions, was performed, provid- 
ing an SCF energy of -2.86167995 a.u. which agrees quite well with the accurate 
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0) Known an initial basis set {qoi} (which here is taken as the SCF orbitals), 

1) Compute  the integrals 

h = (h; j}  = ( < ~ , l h l ~ j > }  

R = ~Rijkt} = {(qoiqojlr -11qokqot> = (ijlkl)} 

2) do i = 1, n; do j  = 1, i; [ij] = j  + (i2 _ i ) /2  

do  k = 1, n; do  t = 1, k; [k~ = t + (g2 _ k ) / 2  

if [ij] >>. [kl] then 

([ij][H[[kO> = 2-(~'J+~k')/2{tSjlhik + 6jkhil + 6ilhjk + 6ik6jl + (ik~l) + (jklil)} 

end if 

end do k, l 

end do i , j  

Algorithm A2. Evaluation of the integrals involved into the computation of a two-electron CI wave- 
function. 

value repor ted  by Bunge et al. [13]. The set of 465 generated configurat ions has pro- 
vided a full CI energy of  -2.87900628 a.u., which is in agreement  with the value of  
-2 .8790  a.u. repor ted by Parr  [10] as the limit of  the non-angular  terms wavefunc- 
tion. The  proposed  approximate  calculation yielded an energy equal to 
-2 .87888990 a.u., with an eigenvector quadrat ic  mean  error of  2.17 x 10 -5 with 
respect to the exact full CI. 

Table 1 provides the energies of  an assorted set of  two-electron a toms belonging 
to the He isoelectronic sequence. The one-electron basis set was taken as a sequence 
of  wel l - tempered 1 s AO STO functions described by Koga  et al. [14]. The well-tem- 
pered sequence parameters  have not  been reoptimized, the number  of  funct ions 
was also kept  and  were taken as defined in the full electron atoms.  

The  approximate  wavefunct ion 10, a> error  repor ted in Table 1 was compu ted  
with respect to the full CI function ]0,f) as the Euclidean norm: 

e = III0,a> - 1 0 , f ) l l e  N - 1  , (12) 

where N is the number  of  configurat ions in the full CI. In this two-electron case, 
N = (n 2 + n) /2 ,  n being the number  of  STO basis functions used. 

As a consequence of  the approximate  nature  of  the present (2 x 2) procedure,  
the energies E(0, a) become slightly more  positive than  the full CI ones. The energy 
deviations,  
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e = IE(0 ,  a)  - E ( 0 , f ) l ,  (13)  

are small (10 -7 < c < 10 -3) and decrease as the atoms possess a higher atomic num- 
ber and more STO functions are used. 

4. N o t e s  about  some  methodolog ica l  features 

Due to the step by step nature of the proposed approximate wavefunctions the 
algorithm can also be used as a means to choose the most relevant configurations of 
a given electronic system. 

The obtained approximate eigenvector could be further refined using an exact 
algorithm such as the one proposed by Nesbet [15] or by Davidson [16]. The Jacobi 
based algorithm proposed by us [6] can also be used. TWOEL-961 includes this test 
as well as the Rayleigh quotient test [17a,c], which is fulfilled by both full CI vectors 
and the (2 x 2) approximate ones. 

Full CI results produce an electronic energy value which is invariant upon the 
chosen monoelectronic basis set. Indeed, SCF or one-electron core Hamiltonian 
vectors yield the same energy but a different, rotated, wavefunction. 

With respect to the (2 x 2) approximate calculation, SCF vectors produce more 
accurate energy and wavefunctions than one-electron core Hamiltonian vectors. 
When using SCF vectors, the coefficient associated with the first monoexcitation, if 
used as a first-step correction, becomes zero, according to the fulfillment of  
Brillouin's theorem. 

Better results could be obtained by augmenting the dimension of the matrix h 
in eq. (3). This means attaching more than one excited configuration at each step 
and in this way destroying perhaps the elegant simplicity of  the proposed algo- 
rithm. 

5. Conc lus ions  

The small errors encountered in the comparison of the proposed procedure and 
the full CI preclude that the proposed (2 × 2) Algorithm A1 constitutes an accurate 
and simple way to compute approximate wavefunctions up to full CI. 

A simple and powerful, Jacobi related (2 x 2) procedure has been described. 

i TWOEL-96 source can be downloaded from the following WWW address: 
http: / / stark, udg.es / ,,~ emili / twoel96, htm 
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